Molecular Simulations of Carbon Dioxide and Water: Cation Solvation

Louise J. Criscenti* and Randall T. Cygan

Geochemistry Department, P.O. Box 5800 MS 0754, Sandia National Laboratories, Albuquerque, New Mexico 87185-0754, United States

ABSTRACT: Proposed carbon dioxide sequestration scenarios in sedimentary reservoirs require investigation into the interactions between supercritical carbon dioxide, brines, and the mineral phases found in the basin and overlying caprock. Molecular simulations can help to understand the partitioning of metal cations between aqueous solutions and supercritical carbon dioxide where limited experimental data exist. In this effort, we used classical molecular dynamics simulations to compare the solvation of alkali and alkaline-earth metal cations in water and liquid CO$_2$ at 300 K by combining a flexible simple point charge model for water and an accurate flexible force field for CO$_2$. Solvation energies for these cations are larger in water than in carbon dioxide, suggesting that they will partition preferentially into water. In both aqueous and CO$_2$ solutions, the solvation energies decrease with cation size and increase with cation charge. However, changes in solvation energy with ionic radii are smaller in CO$_2$ than in water suggesting that the partitioning of cations into CO$_2$ will increase with ion size. Simulations of the interface between aqueous solution and supercritical CO$_2$ support this suggestion in that some large cations (e.g., Cs$^+$ and K$^+$) partition into the CO$_2$ phase, often with a partial solvation sphere of water molecules.

INTRODUCTION

To develop accurate regional scale models to evaluate the fate of supercritical CO$_2$ in various CO$_2$ sequestration scenarios, it is important to assess the exchange of solutes across the supercritical CO$_2$–water interface. Experimental studies$^{1−7}$ of the solubility of CO$_2$ in water and simple aqueous solutions have been used to determine the range of CO$_2$ concentrations trapped in idealized reservoir fluids in regional scale multiphase models. However, the interaction of supercritical CO$_2$ with the complex brine compositions found in aquifers have typically been ignored in such hydrological simulations, most likely because of the lack of data (solubility, density, partition coefficients, etc.) for these interactions at the temperatures and pressures expected in geological reservoirs. Recent experimental and simulation studies$^{8−12}$ of the geochemistry of reservoir fluids and mineral interactions have provided new insights on supercritical CO$_2$ behavior in geological media. Rempel et al.13 present experimental data for the fractionation of Na, Fe, Cu, and Zn between brine and CO$_2$ for pressures of 6.6−16 MPa at 340 K. The data exhibit an increase in Na concentrations with increasing CO$_2$ density and suggest that Fe, Cu, and Zn could be transferred to adjacent aquifer systems. However, this experimental approach is recently developed and difficult to implement. Therefore, geochemical modeling of reactions among reservoir rocks, brine, and supercritical CO$_2$ focus on investigating the impact of high PCO$_2$ on reactions between saline brines and minerals under reservoir conditions, but, as a first approximation, neglect the solubility of water, salts, or metals in the supercritical phase.14

Because of limited experimental data on metal partitioning between supercritical CO$_2$ and brine solutions, it is valuable to consider the use of computational chemistry methods to explore this subject. Metal partitioning into the supercritical CO$_2$ phase may influence chemical reactions such as the dissolution of primary phases or precipitation of secondary minerals, and physical properties such as both the density and viscosity of the CO$_2$ phase, and the contact angles formed between supercritical CO$_2$, water, and mineral phases. Super-critical CO$_2$ has been considered as a potential fluid for extracting metal ions from liquid phases. The ions cannot readily be extracted in supercritical CO$_2$, but the use of metal–organic complexes greatly increases metal partitioning into the supercritical phase.15 This suggests that metal speciation in the brine may also impact species partitioning between the two fluids.

The research presented here provides a first look at the solvation of alkali and alkaline-earth metal cations in CO$_2$ fluids and the likelihood that these cations will partition between brines and supercritical CO$_2$ in sedimentary basin environments. An overall goal of our research is to use molecular simulations to model the structure and behavior of injected supercritical CO$_2$ in subsurface reservoirs and how it eventually
interacts with resident aqueous fluids and minerals over time. In the present study we use molecular dynamics to investigate the structure of the CO₂–brine interface and how electrolytes, specifically alkali and alkaline earth cations, are partitioned between aqueous and CO₂ phases. We report the application of an accurate and flexible CO₂ force field, compare cation solvation in water and CO₂ systems, and examine the solubility of CO₂ in water.

COMPUTATIONAL METHODS

Carbon Dioxide Force Field. For the molecular simulations of this study, we use the fully flexible CO₂ force field developed by Cygan et al.\(^6\) The three-point force field uses the refined Van der Waals parameters of Zhu et al.\(^7\) that were derived from the original model of Harris and Young.\(^8\) The force field also allows for full intramolecular bond stretch and angle bend and thus correctly predicts the vibrational spectra of CO₂. The CO₂ potential is compatible with most point-charge force fields including Clayt\(^9\) and other related force fields for the simulation of geochemical systems. The interatomic potentials should be appropriate for simulating complex CO₂ systems involving multiple phases, interfaces, and the addition of dissolved cations in both water and CO₂ phases.

In the Cygan et al.\(^6\) force field, the total potential energy of the molecular system is described by Coulombic and van der Waals contributions representing nonbonded energies and bond-stretch and angle-bend terms representing the intramolecular energies. The long-range Coulombic or electrostatic energy is given by eq 1, where \(q_i\) and \(q_j\) are the partial charges of the atoms and \(r_{ij}\) is the distance between the atoms.

\[
E_{\text{Coul}} = \frac{q_i q_j}{r_{ij}}
\]

(1)

The short-range van der Waals energy is given by

\[
E_{\text{VDW}} = 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right]
\]

(2)

where \(\varepsilon_{ij}\) and \(\sigma_{ij}\) are optimized for intermolecular interactions using values determined by Zhu et al.\(^7\) The interaction parameters between unlike atoms are calculated according to the arithmetic mean rule for the distance parameter, \(\sigma_{ij}\), and the geometric mean rule for the energy parameter, \(\varepsilon_{ij}\). Harmonic potentials are used for the bond stretch and angle bend terms.

\[
E_{\text{Stretch}} = \frac{1}{2} k_s (r_s - r_e)^2
\]

(3)

\[
E_{\text{Bend}} = \frac{1}{2} k_a (\theta - \theta_e)^2
\]

(4)

Both expressions describe the increase in the potential energy based on force constants \(k_s\) and \(k_a\) and the deviations from the equilibrium geometry \((r_s, \theta_e)\) of the CO₂ molecules. The potential energy for any configuration of CO₂ molecules in a periodic simulation cell is evaluated using this set of potentials by summing all possible pairwise interactions. Ewald summation is used to ensure convergence of the long-range Coulombic energy, van der Waals contributions are calculated using a cubic spline with a 12.5 Å cutoff. The Coulombic and van der Waals contributions are excluded when evaluating intramolecular interactions.

Molecular Dynamics Simulations. Classical molecular dynamics (MD) was used to evaluate the structure and thermodynamics of the solvation of alkali and alkaline earth cations by CO₂ and to examine the structure of the water–CO₂ interfaces. The Forcite software\(^25\) was used to evaluate the electrostatic and short-range interactions for each atomic configuration and time step. MD simulations were performed using a canonical NVT thermodynamic ensemble, maintaining a fixed cell volume for a fixed number of atoms. Temperature was controlled using the Nose–Hoover\(^23\) method. One million time steps of 1 fs were used to obtain 1 ns of simulation time; atomic configurations were saved every 1000 time steps (1 ps) for efficient data storage and trajectory analysis. MD simulations of systems involving water–CO₂ and brine–CO₂ interfaces were completed for 0.5 ns of simulation time using the same frequency of molecular configuration storage.

Cation Solvation in Liquid Carbon Dioxide. MD simulations of alkali and alkaline earth cation solvation in liquid CO₂ were performed using the NVT thermodynamic ensemble with 512 CO₂ molecules in a simulation box \((V = 48.23 \text{ nm}^3; \rho = 0.77 \text{ g/cm}^3)\) at 300 K for comparison with cation solvation in liquid water which is typically determined at ambient temperature and pressure \((300 \text{ K}, 0.1 \text{ MPa}).\)\(^4,25\) A simulation was performed for 1 ns to equilibrate the liquid CO₂ in a cubic periodic cell with a cell length of 36.4 Å. Subsequently, each cation was placed in the equilibrated model CO₂ liquid. A similar set of simulations was completed for the same number of CO₂ molecules at supercritical conditions \((350 \text{ K}, 20 \text{ MPa})\) using a cubic periodic cell with a cell length of 39.2 Å \((V = 60.24 \text{ nm}^3; \rho = 0.62 \text{ g/cm}^3)\). For both conditions, each solvation model was initially geometry-optimized for 500 iterations prior to 1 ns of MD simulation. Charge balance was established by using a charge-neutralizing background.\(^20,26\) The solvation energy for a particular cation was estimated by subtracting the potential energy of the equilibrated liquid CO₂ simulation cell from the potential energy of the equilibrated simulation cell containing liquid CO₂ (or supercritical CO₂) and the cation [i.e., \(\text{PE(CO}_2 + \text{cation}) - \text{PE(CO}_2\text{ cell})\)]. The van der Waals parameters used for the alkali (Li\(^+\), Na\(^+\), K\(^+\), and Cs\(^+\)) and alkaline earth cations (Mg\(^{2+}\), Ca\(^{2+}\), Sr\(^{2+}\), Ba\(^{2+}\)) are provided in Table 1. Four cations of each series were studied to establish trends in solvation energy with cation size. The van der Waals parameters were all determined from calculations performed to describe cation–water interactions. Therefore, as a first-order approximation, we assume the intrinsic parameters used for each cation from calculations in aqueous solutions are the same for the CO₂ solutions when combined with the CO₂ parameters. The calculated solvation energies for the alkali and alkaline earth metals in CO₂ were

![Table 1. Force Field Parameters for Cations](image-url)
compared to the enthalpies of solvation for these cations in H$_2$O provided by Franks.24

Models of the Water–Supercritical Carbon Dioxide Interface. Molecular dynamics simulations of water–supercritical CO$_2$ interface were completed using NVT ensemble, 6912 H$_2$O molecules, 2048 CO$_2$ molecules, and appropriate densities at 20 MPa and 350 K (0.98 g/cm3 for H$_2$O and 0.62 g/cm3 for supercritical CO$_2$). Carbon dioxide is modeled using the Cygan et al.16 flexible potential described earlier. Water is represented by the simple point charge (SPC) water model27 combined with harmonic bond stretching and angle bending based on the intramolecular parameters from Teleman et al.28 We use a three-dimensional periodic simulation cell (74.5 Å \times 74.5 Å \times 78.0 Å) in which the interface between the two phases is allowed to evolve for 0.5 ns—sufficient to obtain local equilibrium and to monitor the evolution of the interfacial region. A vacuum gap of approximately 1.5–2.5 Å was constructed between the two phases at the interfaces to avoid any initial high energy environment. Effectively, the simulation cell incorporates lamellae of water and CO$_2$ regions with two interfaces, one in the central region of the cell which we monitor, and another on the cell side boundary which is ignored.

A periodic simulation cell similar to that used for the water–supercritical CO$_2$ interface was constructed to demonstrate the partitioning of various alkali and alkaline earth cations between the two phases at 20 MPa and 350 K. The initial configuration incorporated the water–CO$_2$ interface with a uniform distribution of seven cations (Na$^+$, K$^+$, Ca$^{2+}$, Ba$^{2+}$, Mg$^{2+}$, Sr$^{2+}$, and Cs$^+$) at the central interface. Four of each cation type were placed at the interface with no two cations within 9 Å of each other. This arrangement corresponds to an approximate total concentration of 0.1 M assuming equal solvent molecule contributions. Particular care in the initial configuration of cations at the interface ensures minimal bias in solvent molecule preference. No counteranions are included in the simulation cell so as to limit ion–ion associations and avoid biasing the partitioning between phases. Charge balance is achieved by a neutralizing background of approximately -0.0001 e/Å3 which is relatively small and is expected to have minimal impact on the cation distributions. Nonetheless, this constraint would necessarily be relaxed by the inclusion of explicit counterions in a more realistic simulation.29,30 As with the MD simulation of the pure water–supercritical CO$_2$ interface, we allow the system to evolve for 0.5 ns while saving configurations every 1000 time steps (1 ps).

RESULTS AND DISCUSSION

Cation Solvation Structure. The cations are solvated in liquid CO$_2$, with a clearly defined first solvation shell. Figure 1 illustrates an equilibrated simulation cell of liquid CO$_2$ and corresponding equilibrated simulation cells for a single Na$^+$ and a single Mg$^{2+}$ cation in liquid CO$_2$. It can clearly be seen that the structure of liquid CO$_2$ is disrupted by the presence of the cations and that the CO$_2$ molecules orient around both Na$^+$ and Mg$^{2+}$ such that one oxygen atom of each coordinating molecule is immediately associated with the cation. Details of the CO$_2$ coordination spheres are provided below the respective simulation cells. The comparative sizes of the Na$^+$ and Mg$^{2+}$ cations are based on their relative ionic radii.

In the top half of Figure 2, a comparison between the structure of simulated liquid CO$_2$ (300 K, $\rho = 0.77$ g/cm3 at 8 MPa) and supercritical CO$_2$ (350 K, $p = 0.62$ g/cm3 at 20 MPa) is provided through radial distribution functions (RDFs)

Figure 1. Equilibrated cells of liquid CO$_2$ and Na$^+$ and Mg$^{2+}$ solvated in liquid CO$_2$ from MD simulations at 300 K after 1 ns of simulation time. Details of CO$_2$ coordination spheres about cations are presented below the respective simulation cells.
for the intermolecular O–O and C–O distances. The
difference in the local structure between the two fluids
that we simulated is not large as demonstrated by a slight shift in
the primary O–O peak position at 3.2 Å. Broader O–O peaks
occur at approximately 5.2 Å and relate to some structure in the
second coordination sphere of CO2 molecules. The C–O peaks
centered at 4.2 Å include a shoulder at about 3.2 Å representing
a closer contact between CO2 molecules, most likely associated
with a T-shaped molecular configuration.31 In the bottom half
of Figure 2, the RDFs for a small divalent cation (Mg2+) and a
large monovalent cation (Cs+) in both liquid CO2 and supercritical
CO2 are illustrated. The RDFs for Mg2+ exhibit relatively sharp first-coordination peaks at 3.3 Å and broad
second peaks at 5.5 Å. The Cs+ RDFs only display the first
coordination peak (4.3 Å) and are less structured compared to those for Mg2+, which is consistent with the difference in CO2
solvation energies for the two cations (see below). The RDF
curves derived for liquid and supercritical solvents exhibit some
erelationship between overlap for each cation, suggesting that the solvation of alkali and alkaline earth cations is similar in CO2 under both
conditions. We observe similar comparisons between the RDFs
for liquid and supercritical CO2 solvation of intermediate-sized
cations (not shown).

The number of CO2 molecules in the first solvation shell
around each cation was determined from RDFs such as those
depicted in the bottom graph of Figure 2. The first peak maximum represents the average cation−C distance and the
first peak minimum is characteristic of the outer radius of the
first solvation shell. In general, for both suites of metal cations,
the cation−C distance increases as a function of cation size.
Comparison of the RDFs for the alkali metals and the alkaline
earth metals suggests that the divalent metals impose more
structure on the solvent. This is illustrated in Figure 2: the first
peak of the Mg−C RDF has a higher intensity than the Cs−C
peak, and the Mg−C RDF exhibits a clearly defined second
maximum and minimum suggesting the presence of a second
well-structured solvation shell.

Integration of the RDFs for the cation−carbon distances
provides the number of coordinating CO2 molecules about
each cation. The cutoff for the first solvation shell is usually
correlated with the first minimum in the RDF curves. From
Figure 2, it can be seen that the trough between the peaks in
the Mg RDF is relatively flat over a 0.25 Å distance, allowing for
some discretion in determining the upper limit of integration
which can result in a variation of one molecule in the first
solvation shell. The coordination number varies primarily with
cation size. For the alkali metals, the coordination numbers are
4−5 for Li+, 6 for Na+, 8 for K+, and 9 for Cs+. For the alkaline
earth metals, the coordination numbers are 6−7 for Mg2+, 8−9
for Ca2+, 10 for Sr2+, and 10−11 for Ba2+.

Overall, the coordination numbers for cations in water tend
to be somewhat smaller. Reported experimental coordination
or hydration numbers for cations differ depending on the
method of analysis. However, in general, the numbers reported
from experiment for the alkali metals are 4 for Li+, 6 for Na+, and 6−8 for both K+ and Cs+.32 For the alkaline earth metals,
the coordination numbers determined experimentally are 6 for
Mg2+, 7−8 for Ca2+, 33−35 6−10 for Sr2+,36,37 and 9.5 for
Ba2+.38 These experimentally determined numbers compare
well to those determined from molecular dynamics simulations
in a previous study: 6 for Mg2+, 6−7 for Ca2+,39 8 for Sr2+, and 8.8 for
Ba2+.38 The higher coordination numbers observed for CO2
solvent than those for water are likely due to steric
considerations associated with the ability to align more linear
CO2 molecules than angular H2O molecules about the sphere
of a closed-shell cation.

Cation Solvation Thermodynamics. A comparison
between the solvation energies for the various alkali and
alkaline earth cations obtained by MD simulation (solvated by
liquid CO2) and the solvation enthalpies for the cations in
water reported in the literature39 is provided in Figure 3. In all
cases, the solvation energies for the cations in water are larger
(i.e., more negative), indicating that the cations prefer to be
solvated in water than in carbon dioxide. However, the
differences in solvation energies for the alkali metals in the
two solvents is relatively small (<40 kcal/mol) compared to the
differences observed for the alkaline earth metals (>135 kcal/
mol). In addition, for both series of cations, changes in
solvation energy with increasing ionic radii are smaller in CO2
than in water, suggesting that the overall partitioning of cations
into CO2 will increase with ion size. In all cases, the cations
prefer solvation by H2O, with the most likely cations to
partition into CO2 to be those with nearly equal solvation
energies in both fluids, namely K+ and Cs+.

Solvation energies derived from the MD simulations for
cations by supercritical CO2 follow trends in cation size similar
to those observed for liquid CO2 but with a decrease in
solvation energy (less negative values) by approximately 50
cal/mol. However, potential energies obtained for the
equilibrium configurations exhibit relatively large variation
(25−30%) at supercritical conditions and ultimately result in
large uncertainties in the calculated solvation energy. We also
examined the change in volume associated with the solvation of Cs⁺ by liquid CO₂ and its effect on the calculated solvation energy. For this extreme case—Cs⁺ is the largest cation and has the lowest solvation energy—we compare the solvation energy obtained for a simulation cell having an expanded volume associated with the Cs⁺—CO₂ coordination sphere (200 Å³) with that derived for the original solvation cell. The resulting solvation energy for the expanded cell is statistically equivalent, well within the estimated 5% relative uncertainty we obtain for the original simulation cell.

Water–Supercritical Carbon Dioxide Interface. Molecular dynamics simulations of the water–supercritical CO₂ interface provide insights into the dynamical evolution of relatively immiscible fluids in addition to testing the suitability of combining interaction potentials for the two fluids. Figure 4 includes snapshots of both the initial configuration and the resulting structure of the water–supercritical CO₂ interface after 0.5 ns of simulation, and the corresponding compositional profile across the central interface. Using standard combination rules²¹ for the van der Waals interactions between water and CO₂ our MD results clearly exhibit a diffuse and stable interface between the two phases. Additionally, a significant number of CO₂ molecules have diffused from the bulk CO₂ into the water region to form a homogeneous distribution of dissolved CO₂ in water at a concentration of about 0.02 mole fraction. This predicted concentration represents the limiting solubility of CO₂ in water and is similar to the experimental value¹ for the modeled conditions, considering that the classical simulation does not allow for dissociation or reaction of the classical CO₂ model into bicarbonate or other carbonate species. In contrast to the dissolution of CO₂ into water, the MD simulation exhibits only a trace amount of water molecules in the supercritical CO₂ phase consistent with the expected insolubility of water. The resulting compositional profiles for both components clearly exhibit a diffuse transitional region of about 10 Å defining the molecular interface between the phases.

Cations and the Supercritical Water–Carbon Dioxide Interface. Given the comparison of solvation energies of various alkali and alkaline earth cations derived from MD simulations and the dependence of partitioning on cation charge and size, it is helpful to demonstrate the likely behavior

Figure 3. Comparison of solvation energies for various alkali and alkaline earth cations obtained by MD simulation (solvated by liquid CO₂ at 300 K) and from experiment (solvated by H₂O at 300 K) as a function of cation ionic radius; uncertainties in the solvation energies are less than the symbol size.

Figure 4. Initial configuration (left) and after 500 ps (right) of MD simulation cell showing water–supercritical CO₂ interface at 350 K and 20 MPa. Concentration variation for both components across the interface exhibit diffusional profile with finite solubility of CO₂ in water phase indicated.
of cation species at the water—supercritical CO₂ interface. Molecular configurations for the initial simulation cell and after 0.5 ns of MD simulation for cation partitioning at the water—CO₂ interface are presented in Figure 5. In general, the MD results indicate the strong affinity of cations to partition into the aqueous phase with most of the alkali and alkaline earth cations fully solvated by water molecules. However, several cations exist in the CO₂ phase but are either partially (K⁺ and Cs⁺) or fully coordinated (Sr²⁺) by water molecules (see Abstract graphic). The partial solvation of the alkali cations is consistent with the results of our analysis of solvation energies (Figure 3) where the larger monovalent cations prefer the aqueous phase but the energy difference for solvation by CO₂ phase is only about 10–20 kcal/mol. Therefore, it is not unexpected to have both water and CO₂ molecules comprising the first solvation sphere. In contrast, the occurrence of divalent Sr²⁺ in the CO₂ phase is surprising especially with a solvation energy difference of approximately 160 kcal/mol between solvents. In this MD simulation example, however, Sr²⁺ remains fully hydrated and the cation—water complex diffuses across the interface to exist completely within the CO₂ phase. Further calculations would be required to calculate the solvation of hydrated ions in a CO₂ solvent. Assuming stability, the hydrated cations (partial or fully) could contribute to an increase in water solubility in supercritical CO₂ fluids.

As in the pure water—CO₂ simulation, CO₂ molecules diffuse across the interface and into the aqueous phase but are typically not associated with the relatively high concentration of cations. In general, these results and more advanced molecular simulations of brine—supercritical CO₂ systems provide a novel approach for evaluating densities, solubilities, and related properties of complex natural systems that may not be easily determined through experimental means.

Implications. Molecular dynamics simulations with a flexible CO₂ force field have been used to derive structural and thermodynamic properties associated with the solvation of alkali and alkaline earth cations in CO₂ liquid. Interfaces between water and supercritical CO₂ with and without cations are simulated to demonstrate the utility of large-scale MD simulations for evaluating the evolution of fluid interfaces and the partitioning of cations. The solubility of supercritical CO₂ in H₂O at 350 K and 20 MPa is successfully predicted by combining flexible CO₂ and H₂O force fields.

As a first approximation in field-scale multiphase flow codes used to simulate various CO₂ sequestration scenarios, metal cations are assumed not to partition into nonpolar solvents such as supercritical CO₂. However, these preliminary molecular simulations suggest that the difference in energy for alkali metal solvation in liquid water and CO₂ is relatively small (<40 kcal/mol). This difference decreases with increasing ionic radii, and in the large-scale interfacial simulations, the two larger monovalent cations, Cs⁺ and K⁺, that have nearly equivalent solvation energies in both solvents, do indeed partition between CO₂ and H₂O. In addition, in supercritical CO₂, the first solvation shell for both cations includes both CO₂ and H₂O molecules.

In contrast, the solvation energies for the divalent alkaline earth metal cations in CO₂ are much smaller than in water, suggesting that they are less likely to partition into supercritical CO₂ than the alkali metals. However, in our simulations, a Sr²⁺ cation partitions into the CO₂ solvent with a complete water solvation shell. This suggests that divalent and higher-charged metal cations may partition into supercritical CO₂ with hydration shells that buffer their charge.

These results imply that the metals in saline brines under reservoir conditions may partition into supercritical CO₂ and increase the concentration of water in this phase. Metal partitioning into the supercritical phase may influence chemical reactions such as the dissolution of primary minerals, precipitation of secondary phases, and the interaction between the two fluid phases. These simulations suggest that further classical molecular dynamics simulations should be performed to investigate the interaction of more realistic brine compositions with supercritical CO₂ over a range of geological repository conditions to evaluate the potential extent and impact of metal-partitioning into the supercritical phase.

Figure 5. Initial configuration (left) and after 500 ps (right) of MD simulation cell of water—supercritical CO₂ system at 350 K and 20 MPa showing various cations near the CO₂ (red)—H₂O (blue) interface.
Author Information

Corresponding Author
*Phone: 505-284-4357; fax: 505-844-7354; email: ljcrisc@sandia.gov.

Notes
The authors declare no competing financial interest.

Acknowledgments
This work was funded in part by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award DE-SC-0001114. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

References
(22) Accelrys. Materials Studio, Release 5.5; Accelrys Software Inc.: San Diego, CA, 2010.

